• Hunting for microbes since 2003

  • We seek to understand

    the role of microorganisms in Earth's nutrient cycles

    and as symbionts of other organisms

  • Cycling of carbon, nitrogen and sulfur

    affect the health of our planet

  • The human microbiome -

    Our own social network of microbial friends

  • Ancient invaders -

    Bacterial symbionts of amoebae

    and the evolution of the intracellular lifestyle

  • Marine symbioses:

    Listening in on conversations

    between animals and the microbes they can't live without

  • Single cell techniques offer new insights

    into the ecology of microbes

  • Microbial Symbioses

    University of Vienna PhD program

  • Apply for the DOME International PhD/PostDoc program

Dome News

Latest publications

Coastal Bacterial Community Response to Glacier Melting in the Western Antarctic Peninsula.

Current warming in the Western Antarctic Peninsula (WAP) has multiple effects on the marine ecosystem, modifying the trophic web and the nutrient regime. In this study, the effect of decreased surface salinity on the marine microbial community as a consequence of freshening from nearby glaciers was investigated in Chile Bay, Greenwich Island, WAP. In the summer of 2016, samples were collected from glacier ice and transects along the bay for 16S rRNA gene sequencing, while in situ dilution experiments were conducted and analyzed using 16S rRNA gene sequencing and metatranscriptomic analysis. The results reveal that certain common seawater genera, such as , and HTCC2207, responded positively to decreased salinity in both the bay transect and experiments. The relative abundance of these bacteria slightly decreased, but their functional activity was maintained and increased the over time in the dilution experiments. However, while ice bacteria, such as and , tolerated the increased salinity after mixing with seawater, their gene expression decreased considerably. We suggest that these bacterial taxa could be defined as sentinels of freshening events in the Antarctic coastal system. Furthermore, these results suggest that a significant portion of the microbial community is resilient and can adapt to disturbances, such as freshening due to the warming effect of climate change in Antarctica.

Alcamán-Arias ME, Fuentes-Alburquenque S, Vergara-Barros P, Cifuentes-Anticevic J, Verdugo J, Polz M, Farías L, Pedrós-Alió C, Díez B
2021 - Microorganisms, 1: in press

Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes.

It is well established that plasmids play an important role in the dissemination of antimicrobial resistance (AMR) genes; however, little is known about the role of the underlying interactions between different plasmid categories and other mobile genetic elements (MGEs) in shaping the promiscuous spread of AMR genes. Here, we developed a tool designed for plasmid classification, AMR gene annotation, and plasmid visualization and found that most plasmid-borne AMR genes, including those localized on class 1 integrons, are enriched in conjugative plasmids. Notably, we report the discovery and characterization of a massive insertion sequence (IS)-associated AMR gene transfer network (245 combinations covering 59 AMR gene subtypes and 53 ISs) linking conjugative plasmids and phylogenetically distant pathogens, suggesting a general evolutionary mechanism for the horizontal transfer of AMR genes mediated by the interaction between conjugative plasmids and ISs. Moreover, our experimental results confirmed the importance of the observed interactions in aiding the horizontal transfer and expanding the genetic range of AMR genes within complex microbial communities.

Che Y, Yang Y, Xu X, Břinda K, Polz MF, Hanage WP, Zhang T
2021 - Proc Natl Acad Sci U S A, 6: in press

Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes.

Western diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes (T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein, we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome interactions under WD to infer which members of microbiota contribute to the altered host metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful effects on host's metabolism. We then validate the functional role of the predicted bacteria in regulating metabolism and show that they act via different host pathways. Our gene expression and electron microscopy studies show that two species from Lactobacillus genus act upon mitochondria in the liver leading to the improvement of lipid metabolism. Metabolomics analyses revealed that reduced glutathione may mediate these effects. Our study identifies potential probiotic strains for T2D and provides important insights into mechanisms of their action.

Rodrigues RR, Gurung M, Li Z, García-Jaramillo M, Greer R, Gaulke C, Bauchinger F, You H, Pederson JW, Vasquez-Perez S, White KD, Frink B, Philmus B, Jump DB, Trinchieri G, Berry D, Sharpton TJ, Dzutsev A, Morgun A, Shulzhenko N
2021 - Nat Commun, 1: 101

Lecture series

Exploring viral diversity from the global oceans to the human gut

Ann Gregory
KU Leuven, Belgium
15.04.2021
12:00 h
Webinar

Making chemistry visible in complex biological systems

Klaus Koren
Aarhus University, Demark
22.04.2021
12:00 h
Webinar