Publications

Publications in peer reviewed journals

2 Publications found
  • Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface.

    Probst A, Weinmaier T, Raymann K, Perras A, Emerson J, Rattei T, Wanner G, Klingl A, Berg I, Viehweger B, Yoshinaga M, Hinrichs K-U, Thomas B, Meck S, Auerbach A, Heise M, Schintlmeister A, Schmid M, Wagner M, Gribaldo S, Banfield J, Moissl-Eichinger C
    2014 - Nat Commun., 5: 5497
    SM1 Euryarchaeon

    Abstract: 

    Subsurface microbial life contributes significantly to biogeochemical cycling, yet it remains largely uncharacterized, especially its archaeal members. This 'microbial dark matter' has been explored by recent studies that were, however, mostly based on DNA sequence information only. Here, we use diverse techniques including ultrastuctural analyses to link genomics to biology for the SM1 Euryarchaeon lineage, an uncultivated group ofsubsurface archaea. Phylogenomic analyses reveal this lineage to belong to a widespread group of archaea that we propose to classify as a new euryarchaeal order ('Candidatus Altiarchaeales'). The representative, double-membraned species 'Candidatus Altiarchaeum hamiconexum' has an autotrophic metabolism that uses a not-yet-reported Factor420-free reductive acetyl-CoA pathway, confirmed by stable carbon isotopic measurements of archaeal lipids. Our results indicate that this lineage has evolved specific metabolic and structural features like nano-grappling hooks empowering this widely distributed archaeon to predominate anaerobic groundwater, where it may represent an important carbon dioxide sink.

  • Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.

    Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Göker, M, Parker CT, 45 other authors, Wagner M, Weinstock G, Weissenbach J, White O, Wang J, Zhang L, Zhou Y-G, Field D, Whitman WB, Garrity GM, Klenk H-P.
    2014 - PLoS Biol., 12(8):e1001920

    Abstract: 

    Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.

Book chapters and other publications

No matching database entries were found.