Publications in peer reviewed journals

13 Publications found
  • Microbiome definition re-visited: old concepts and new challenges.

    Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin JA, Maguin E, Mauchline T, McClure R, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran GS, Selvin J, Souza RSC, van Overbeek L, Singh BK, Wagner M, Walsh A, Sessitsch A, Schloter M
    2020 - Microbiome, 1: 103


    The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term "microbiome." Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role. Video Abstract.

  • Chlamydiae in the Environment.

    Collingro A, Köstlbacher S, Horn M
    2020 - Trends Microbiol., in press


    Chlamydiae have been known for more than a century as major pathogens of humans. Yet they are also found ubiquitously in the environment where they thrive within protists and in an unmatched wide range of animals. This review summarizes recent advances in understanding chlamydial diversity and distribution in nature. Studying these environmental chlamydiae provides a novel perspective on basic chlamydial biology and evolution. A picture is beginning to emerge with chlamydiae representing one of the evolutionarily most ancient and successful groups of obligate intracellular bacteria.

  • Roadmap for naming uncultivated Archaea and Bacteria.

    Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kämpfer P, Konstantinidis KT, Lane CE, Papke RT, Parks DH, Rosselló-Móra R, Stott MB, Sutcliffe IC, Thrash JC, Venter SN, Whitman WB, Acinas SG, Amann RI, Anantharaman K, Armengaud J, Baker BJ, Barco RA, Bode HB, Boyd ES, Brady CL, Carini P, Chain PSG, Colman DR, DeAngelis KM, de Los Rios MA, Estrada-de los Santos P, Dunlap CA, Eisen JA, Emerson D, Ettema TJG, Eveillard D, Girguis PR, Hentschel U, Hollibaugh JT, Hug LA, Inskeep WP, Ivanova EP, Klenk HP, Li WJ, Lloyd KG, Löffler FE, Makhalanyane TP, Moser DP, Nunoura T, Palmer M, Parro V, Pedrós-Alió C, Probst AJ, Smits THM, Steen AD, Steenkamp ET, Spang A, Stewart FJ, Tiedje JM, Vandamme P, Wagner M, Wang FP, Hedlund BP, Reysenbach AL
    2020 - Nat Microbiol, in press
    Roadmap for naming uncultured microbes


    The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity.

  • Crypt residing bacteria and proximal colonic carcinogenesis in a mouse model of Lynch syndrome.

    Lang M, Baumgartner M, Rożalska A, Frick A, Riva A, Jarek M, Berry D, Gasche C
    2020 - Int. J. Cancer, in press


    Colorectal cancer is a multifactorial disease involving inherited DNA mutations, environmental factors, gut inflammation, and intestinal microbiota. Certain germline mutations within the DNA mismatch repair system are associated with Lynch syndrome tumors including right-sided colorectal cancer with mucinous phenotype and presence of an inflammatory infiltrate. Such tumors are more often associated with bacterial biofilms, which may contribute to disease onset and progression. Inflammatory bowel diseases are also associated with colorectal cancer and intestinal dysbiosis. Herein we addressed the question, whether inflammation can aggravate colorectal cancer development under mismatch repair deficiency. MSH2 mice were crossed into the IL-10 background to study the importance of inflammation and mucosal bacteria as a driver of tumorigenesis in a Lynch syndrome mouse model. An increase in large bowel tumorigenesis was found in double knockout mice both under conventional housing and under specific pathogen-free conditions. This increase was mostly due to the development of proximal tumors, a hotspot for tumorigenesis in Lynch syndrome, and was associated with a higher degree of inflammation. Additionally, bacterial invasion into the mucus of tumor crypts was observed in the proximal tumors. Inflammation shifted fecal and mucosal microbiota composition and was associated with enrichment in Escherichia-Shigella as well as Akkermansia, Bacteroides, and Parabacteroides genera in fecal samples. Tumor-bearing double knockout mice showed a similar enrichment for Escherichia-Shigella and Parabacteroides. Lactobacilli, Lachnospiraceae and Muribaculaceae family members were depleted upon inflammation. In summary, chronic inflammation aggravates colonic tumorigenesis under mismatch repair deficiency and is associated with a shift in microbiota composition. This article is protected by copyright. All rights reserved.

  • Energetic Basis of Microbial Growth and Persistence in Desert Ecosystems.

    Leung PM, Bay SK, Meier DV, Chiri E, Cowan DA, Gillor O, Woebken D, Greening C
    2020 - mSystems, 2: in press


    Microbial life is surprisingly abundant and diverse in global desert ecosystems. In these environments, microorganisms endure a multitude of physicochemical stresses, including low water potential, carbon and nitrogen starvation, and extreme temperatures. In this review, we summarize our current understanding of the energetic mechanisms and trophic dynamics that underpin microbial function in desert ecosystems. Accumulating evidence suggests that dormancy is a common strategy that facilitates microbial survival in response to water and carbon limitation. Whereas photoautotrophs are restricted to specific niches in extreme deserts, metabolically versatile heterotrophs persist even in the hyper-arid topsoils of the Atacama Desert and Antarctica. At least three distinct strategies appear to allow such microorganisms to conserve energy in these oligotrophic environments: degradation of organic energy reserves, rhodopsin- and bacteriochlorophyll-dependent light harvesting, and oxidation of the atmospheric trace gases hydrogen and carbon monoxide. In turn, these principles are relevant for understanding the composition, functionality, and resilience of desert ecosystems, as well as predicting responses to the growing problem of desertification.

  • Activity and metabolic versatility of complete ammonia oxidizers in full-scale wastewater treatment systems.

    Yang Y, Daims H, Liu Y, Herbold CW, Pjevac P, Lin JG, Li M, Gu JD
    2020 - mBio, 11: e03175-19


    The recent discovery of complete ammonia oxidizers (comammox) contradicts the paradigm that chemolithoautotrophic nitrification is always catalyzed by two different microorganisms. However, our knowledge of the survival strategies of comammox in complex ecosystems, such as full-scale wastewater treatment plants (WWTPs), remains limited. Analyses of genomes and transcriptomes of four comammox organisms from two full-scale WWTPs revealed that comammox were active and showed a surprisingly high metabolic versatility. A gene cluster for the utilization of urea and a gene encoding cyanase suggest that comammox may use diverse organic nitrogen compounds in addition to free ammonia as the substrates. The comammox organisms also encoded the genomic potential for multiple alternative energy metabolisms, including respiration with hydrogen, formate, and sulfite as electron donors. Pathways for the biosynthesis and degradation of polyphosphate, glycogen, and polyhydroxyalkanoates as intracellular storage compounds likely help comammox survive unfavorable conditions and facilitate switches between lifestyles in fluctuating environments. One of the comammox strains acquired from the anaerobic tank encoded and transcribed genes involved in homoacetate fermentation or in the utilization of exogenous acetate, both pathways being unexpected in a nitrifying bacterium. Surprisingly, this strain also encoded a respiratory nitrate reductase which has not yet been found in any other genome and might confer a selective advantage to this strain over other strains in anoxic conditions. The discovery of comammox in the genus changes our perception of nitrification. However, genomes of comammox organisms have not been acquired from full-scale WWTPs, and very little is known about their survival strategies and potential metabolisms in complex wastewater treatment systems. Here, four comammox metagenome-assembled genomes and metatranscriptomic data sets were retrieved from two full-scale WWTPs. Their impressive and-among nitrifiers-unsurpassed ecophysiological versatility could make comammox an interesting target for optimizing nitrification in current and future bioreactor configurations.

  • Raman-based sorting of microbial cells to link functions to their genes.

    Lee KS, Wagner M, Stocker R
    2020 - Microb Cell, 3: 62-65


    In our recent work, we developed an optofluidic platform that allows a direct link to be made between the phenotypes (functions) and the genotypes (genes) of microbial cells within natural communities. By combining stable isotope probing, optical tweezers, Raman microspectroscopy, and microfluidics, the platform performs automated Raman-based sorting of taxa from within a complex community in terms of their functional properties. In comparison with manual sorting approaches, our method provides high throughput (up to 500 cells per hour) and very high sorting accuracy (98.3 ± 1.7%), and significantly reduces the human labour required. The system provides an efficient manner to untangle the contributions of individual members within environmental and host-associated microbiomes. In this News and Thoughts, we provide an overview of our platform, describe potential applications, suggest ways in which the system could be improved, and discuss future directions in which Raman-based analysis of microbial populations might be developed.

  • Complementary Metagenomic Approaches Improve Reconstruction of Microbial Diversity in a Forest Soil.

    Alteio LV, Schulz F, Seshadri R, Varghese N, Rodriguez-Reillo W, Ryan E, Goudeau D, Eichorst SA, Malmstrom RR, Bowers RM, Katz LA, Blanchard JL, Woyke T
    2020 - mSystems, 2: in press


    Soil ecosystems harbor diverse microorganisms and yet remain only partially characterized as neither single-cell sequencing nor whole-community sequencing offers a complete picture of these complex communities. Thus, the genetic and metabolic potential of this "uncultivated majority" remains underexplored. To address these challenges, we applied a pooled-cell-sorting-based mini-metagenomics approach and compared the results to bulk metagenomics. Informatic binning of these data produced 200 mini-metagenome assembled genomes (sorted-MAGs) and 29 bulk metagenome assembled genomes (MAGs). The sorted and bulk MAGs increased the known phylogenetic diversity of soil taxa by 7.2% with respect to the Joint Genome Institute IMG/M database and showed clade-specific sequence recruitment patterns across diverse terrestrial soil metagenomes. Additionally, sorted-MAGs expanded the rare biosphere not captured through MAGs from bulk sequences, exemplified through phylogenetic and functional analyses of members of the phylum Analysis of 67 sorted-MAGs showed conserved patterns of carbon metabolism across four clades. These results indicate that mini-metagenomics enables genome-resolved investigation of predicted metabolism and demonstrates the utility of combining metagenomics methods to tap into the diversity of heterogeneous microbial assemblages. Microbial ecologists have historically used cultivation-based approaches as well as amplicon sequencing and shotgun metagenomics to characterize microbial diversity in soil. However, challenges persist in the study of microbial diversity, including the recalcitrance of the majority of microorganisms to laboratory cultivation and limited sequence assembly from highly complex samples. The uncultivated majority thus remains a reservoir of untapped genetic diversity. To address some of the challenges associated with bulk metagenomics as well as low throughput of single-cell genomics, we applied flow cytometry-enabled mini-metagenomics to capture expanded microbial diversity from forest soil and compare it to soil bulk metagenomics. Our resulting data from this pooled-cell sorting approach combined with bulk metagenomics revealed increased phylogenetic diversity through novel soil taxa and rare biosphere members. In-depth analysis of genomes within the highly represented phylum provided insights into conserved and clade-specific patterns of carbon metabolism.

  • The Signal and the Noise: Characteristics of Antisense RNA in Complex Microbial Communities.

    Michaelsen TY, Brandt J, Singleton CM, Kirkegaard RH, Wiesinger J, Segata N, Albertsen M
    2020 - mSystems, 1: in press


    High-throughput sequencing has allowed unprecedented insight into the composition and function of complex microbial communities. With metatranscriptomics, it is possible to interrogate the transcriptomes of multiple organisms simultaneously to get an overview of the gene expression of the entire community. Studies have successfully used metatranscriptomics to identify and describe relationships between gene expression levels and community characteristics. However, metatranscriptomic data sets contain a rich suite of additional information that is just beginning to be explored. Here, we focus on antisense expression in metatranscriptomics, discuss the different computational strategies for handling it, and highlight the strengths but also potentially detrimental effects on downstream analysis and interpretation. We also analyzed the antisense transcriptomes of multiple genomes and metagenome-assembled genomes (MAGs) from five different data sets and found high variability in the levels of antisense transcription for individual species, which were consistent across samples. Importantly, we challenged the conceptual framework that antisense transcription is primarily the product of transcriptional noise and found mixed support, suggesting that the total observed antisense RNA in complex communities arises from the combined effect of unknown biological and technical factors. Antisense transcription can be highly informative, including technical details about data quality and novel insight into the biology of complex microbial communities. This study systematically evaluated the global patterns of microbial antisense expression across various environments and provides a bird's-eye view of general patterns observed across data sets, which can provide guidelines in our understanding of antisense expression as well as interpretation of metatranscriptomic data in general. This analysis highlights that in some environments, antisense expression from microbial communities can dominate over regular gene expression. We explored some potential drivers of antisense transcription, but more importantly, this study serves as a starting point, highlighting topics for future research and providing guidelines to include antisense expression in generic bioinformatic pipelines for metatranscriptomic data.

  • Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean.

    Kitzinger K, Marchant HK, Bristow LA, Herbold CW, Padilla CC, Kidane AT, Littmann S, Daims H, Pjevac P, Stewart FJ, Wagner M, Kuypers MMM
    2020 - Nat Commun, 1: 767
    Nitrospina AOA in situ growth rates


    Nitrification, the oxidation of ammonia via nitrite to nitrate, is a key process in marine nitrogen (N) cycling. Although oceanic ammonia and nitrite oxidation are balanced, ammonia-oxidizing archaea (AOA) vastly outnumber the main nitrite oxidizers, the bacterial Nitrospinae. The ecophysiological reasons for this discrepancy in abundance are unclear. Here, we compare substrate utilization and growth of Nitrospinae to AOA in the Gulf of Mexico. Based on our results, more than half of the Nitrospinae cellular N-demand is met by the organic-N compounds urea and cyanate, while AOA mainly assimilate ammonium. Nitrospinae have, under in situ conditions, around four-times higher biomass yield and five-times higher growth rates than AOA, despite their ten-fold lower abundance. Our combined results indicate that differences in mortality between Nitrospinae and AOA, rather than thermodynamics, biomass yield and cell size, determine the abundances of these main marine nitrifiers. Furthermore, there is no need to invoke yet undiscovered, abundant nitrite oxidizers to explain nitrification rates in the ocean.

  • Transcriptomic Response of Nitrosomonas europaea Transitioned from Ammonia- to Oxygen-Limited Steady-State Growth.

    Sedlacek CJ, Giguere AT, Dobie MD, Mellbye BL, Ferrell RV, Woebken D, Sayavedra-Soto LA, Bottomley PJ, Daims H, Wagner M, Pjevac P
    2020 - mSystems, 1: e00562-19
    N. europaea electron flow


    Ammonia-oxidizing microorganisms perform the first step of nitrification, the oxidation of ammonia to nitrite. The bacterium is the best-characterized ammonia oxidizer to date. Exposure to hypoxic conditions has a profound effect on the physiology of , e.g., by inducing nitrifier denitrification, resulting in increased nitric and nitrous oxide production. This metabolic shift is of major significance in agricultural soils, as it contributes to fertilizer loss and global climate change. Previous studies investigating the effect of oxygen limitation on have focused on the transcriptional regulation of genes involved in nitrification and nitrifier denitrification. Here, we combine steady-state cultivation with whole-genome transcriptomics to investigate the overall effect of oxygen limitation on Under oxygen-limited conditions, growth yield was reduced and ammonia-to-nitrite conversion was not stoichiometric, suggesting the production of nitrogenous gases. However, the transcription of the principal nitric oxide reductase (cNOR) did not change significantly during oxygen-limited growth, while the transcription of the nitrite reductase-encoding gene () was significantly lower. In contrast, both heme-copper-containing cytochrome oxidases encoded by were upregulated during oxygen-limited growth. Particularly striking was the significant increase in transcription of the B-type heme-copper oxidase, proposed to function as a nitric oxide reductase (sNOR) in ammonia-oxidizing bacteria. In the context of previous physiological studies, as well as the evolutionary placement of sNOR with regard to other heme-copper oxidases, these results suggest sNOR may function as a high-affinity terminal oxidase in and other ammonia-oxidizing bacteria. Nitrification is a ubiquitous microbially mediated process in the environment and an essential process in engineered systems such as wastewater and drinking water treatment plants. However, nitrification also contributes to fertilizer loss from agricultural environments, increasing the eutrophication of downstream aquatic ecosystems, and produces the greenhouse gas nitrous oxide. As ammonia-oxidizing bacteria are the most dominant ammonia-oxidizing microbes in fertilized agricultural soils, understanding their responses to a variety of environmental conditions is essential for curbing the negative environmental effects of nitrification. Notably, oxygen limitation has been reported to significantly increase nitric oxide and nitrous oxide production during nitrification. Here, we investigate the physiology of the best-characterized ammonia-oxidizing bacterium, , growing under oxygen-limited conditions.

  • Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants.

    Gwak JH, Jung MY, Hong H, Kim JG, Quan ZX, Reinfelder JR, Spasov E, Neufeld JD, Wagner M, Rhee SK
    2020 - ISME J, 2: 335-346


    Consistent with the observation that ammonia-oxidizing bacteria (AOB) outnumber ammonia-oxidizing archaea (AOA) in many eutrophic ecosystems globally, AOB typically dominate activated sludge aeration basins from municipal wastewater treatment plants (WWTPs). In this study, we demonstrate that the growth of AOA strains inoculated into sterile-filtered wastewater was inhibited significantly, in contrast to uninhibited growth of a reference AOB strain. In order to identify possible mechanisms underlying AOA-specific inhibition, we show that complex mixtures of organic compounds, such as yeast extract, were highly inhibitory to all AOA strains but not to the AOB strain. By testing individual organic compounds, we reveal strong inhibitory effects of organic compounds with high metal complexation potentials implying that the inhibitory mechanism for AOA can be explained by the reduced bioavailability of an essential metal. Our results further demonstrate that the inhibitory effect on AOA can be alleviated by copper supplementation, which we observed for pure AOA cultures in a defined medium and for AOA inoculated into nitrifying sludge. Our study offers a novel mechanistic explanation for the relatively low abundance of AOA in most WWTPs and provides a basis for modulating the composition of nitrifying communities in both engineered systems and naturally occurring environments.

  • Horizontal acquisition of a patchwork Calvin cycle by symbiotic and free-living Campylobacterota (formerly Epsilonproteobacteria).

    Assié A, Leisch N, Meier DV, Gruber-Vodicka H, Tegetmeyer HE, Meyerdierks A, Kleiner M, Hinzke T, Joye S, Saxton M, Dubilier N, Petersen JM
    2020 - ISME J, 1: 104-122


    Most autotrophs use the Calvin-Benson-Bassham (CBB) cycle for carbon fixation. In contrast, all currently described autotrophs from the Campylobacterota (previously Epsilonproteobacteria) use the reductive tricarboxylic acid cycle (rTCA) instead. We discovered campylobacterotal epibionts ("Candidatus Thiobarba") of deep-sea mussels that have acquired a complete CBB cycle and may have lost most key genes of the rTCA cycle. Intriguingly, the phylogenies of campylobacterotal CBB cycle genes suggest they were acquired in multiple transfers from Gammaproteobacteria closely related to sulfur-oxidizing endosymbionts associated with the mussels, as well as from Betaproteobacteria. We hypothesize that "Ca. Thiobarba" switched from the rTCA cycle to a fully functional CBB cycle during its evolution, by acquiring genes from multiple sources, including co-occurring symbionts. We also found key CBB cycle genes in free-living Campylobacterota, suggesting that the CBB cycle may be more widespread in this phylum than previously known. Metatranscriptomics and metaproteomics confirmed high expression of CBB cycle genes in mussel-associated "Ca. Thiobarba". Direct stable isotope fingerprinting showed that "Ca. Thiobarba" has typical CBB signatures, suggesting that it uses this cycle for carbon fixation. Our discovery calls into question current assumptions about the distribution of carbon fixation pathways in microbial lineages, and the interpretation of stable isotope measurements in the environment.

Book chapters and other publications

4 Publications found
  • Is too much fertilizer a problem?

    Sedlacek CJ, Giguere AT, Pjevac P
    2020 - Frontiers for Young Minds, 8: 63


    Fertilizers are added to crops in order to produce enough food to feed the human population. Fertilizers provide crops with nutrients like potassium, phosphorus, and nitrogen, which allow crops to grow bigger, faster, and to produce more food. Nitrogen in particular is an essential nutrient for the growth of every organismon Earth.Nitrogen is all around us and makes up about 78% of the air you breathe. However, plants and animals cannot use the nitrogen gas in the air. To grow, plants require nitrogen compounds fromthe soil,which can be produced naturally or be provided by fertilizers. However, applying excessive amounts of fertilizer leads to the release of harmful greenhouse gases into the atmosphere and the eutrophication of our waterways. Scientists are currently trying to find solutions to reduce the environmentally harmful effects of fertilizers, without reducing the amount of food we can produce when using them.

  • Thinking outside the Chlamydia box

    A Taylor-Brown, T Halter, A Polkinghorne, M Horn
    2020 - 429-458. in Chlamydia Biology. (M Tan, JH Hegemann, C Sütterlin). Caister Academic Press


    Chlamydiae have long been studied exclusively in the context of disease. Yet, accumulating evidence over nearly three decades shows that chlamydiae are ubiquitous in the environment, thriving as symbionts of unicellular eukaryotes such as amoeba and infecting a broad range of animal hosts. These chlamydiae share the characteristic chlamydial developmental cycle and other chlamydial hallmarks. Their discovery fundamentally changed our perspective on chlamydial diversity. Instead of a single genus, Chlamydia, including closely related pathogens, the chlamydiae comprise hundreds of families and genera. Investigating isolates and non-cultured representatives provided insights into features that are in common with or divergent from known Chlamydia species, and suggested that some of these chlamydiae may also be considered pathogens. Importantly, these studies have contributed to a better understanding of the biology of all chlamydiae, and they provide a framework for investigating the evolution of the chlamydial intracellular lifestyle and pathogenicity.

  • One complete and seven draft genome sequences of subdivision 1 and 3 Acidobacteria from soil

    Eichorst SA, Trojan D, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Daum C, Goodwin LA, Shapiro N, Ivanova N, Kyrpides N, Woyke T, Woebken D
    2020 - Microbiology Resource Announcements, 9: 1-4


    We report eight genomes from representatives of the phylum Acidobacteriasubdivisions 1 and 3, isolated from soils. The genome sizes range from 4.9 to 6.7 Mb. Genomic analysis reveals putative genes for low- and high-affinity respiratory oxygen reductases, high-affinity hydrogenases, and the capacity to use a diverse collection of carbohydrates.

  • Draft genome sequences of Chlamydiales bacterium STE3 and Neochlamydia sp. AcF84, endosymbionts of Acanthamoeba spp.

    Köstlbacher S, Michels S, Siegl A, Schulz F, Domman D, Jongwutiwes S, Putaporntip C, Horn M, Collingro A
    2020 - Microbiol Resour Announc, 9: e00220-20


    Chlamydiales bacterium STE3 and Neochlamydia sp. strain AcF84 are obligate intracellular symbionts of Acanthamoeba spp. isolated from the biofilm of a littoral cave wall and gills from striped tiger leaf fish, respectively. We report the draft genome sequences of these two environmental chlamydiae affiliated with the family Parachlamydiaceae.