Publications
Publications in peer reviewed journals
Microbiomes In Natura: Importance of Invertebrates in Understanding the Natural Variety of Animal-Microbe Interactions
2018 - mSystems, in pressAbstract:
Animals evolved in a world teeming with microbes, which play pivotal roles in their health, development, and evolution. Although the overwhelming majority of living animals are invertebrates, the minority of “microbiome” studies focus on this group. Interest in invertebrate-microbe interactions is 2-fold—a range of immune components are conserved across almost all animal (including human) life, and their functional roles may be conserved. Thus, understanding cross talk between microbes and invertebrate animals can lead to insights of broader relevance. Invertebrates offer unique opportunities to “eavesdrop” on intricate host-microbe conversations because they tend to associate with fewer microbes. On the other hand, considering the vast diversity of form and function that has evolved in the invertebrates, they likely evolved an equally diverse range of ways to interact with beneficial microbes. We have investigated only a few of these interactions in detail; thus, there is still great potential for fundamentally new discoveries.
Application of stable-isotope labelling techniques for the detection of active diazotrophs
2018 - Environmental Microbiology, 20: 44-61Abstract:
Investigating active participants in the fixation of dinitrogen gas is vital as N is often a limiting factor for primary production. Biological nitrogen fixation (BNF) is performed by a diverse guild of bacteria and archaea (diazotrophs), which can be free-living or symbionts. Free-living diazotrophs are widely distributed in the environment, yet our knowledge about their identity and ecophysiology is still limited. A major challenge in investigating this guild is inferring activity from genetic data as this process is highly regulated. To address this challenge, we evaluated and improved several 15N-based methods for detecting N2 fixation activity (with a focus on soil samples) and studying active diazotrophs. We compared the acetylene reduction assay and the 15N2 tracer method and demonstrated that the latter is more sensitive in samples with low activity. Additionally, tracing 15N into microbial RNA provides much higher sensitivity compared to bulk soil analysis. Active soil diazotrophs were identified with a 15N-RNA-SIP approach optimized for environmental samples and benchmarked to 15N-DNA-SIP. Lastly, we investigated the feasibility of using SIP-Raman microspectroscopy for detecting 15N-labelled cells. Taken together, these tools allow identifying and investigating active free-living diazotrophs in a highly sensitive manner in diverse environments, from bulk to the single-cell level.
Metaproteogenomic profiling of microbial communities colonizing actively venting hydrothermal chimneys
2018 - Front Microbiol, in pressAbstract:
At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition, metabolic potential and relative in situ protein abundance of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea). We identified overlaps in the in situ functional profiles of both chimneys, despite differences in microbial community composition and venting regime. Carbon fixation on both chimneys seems to have been primarily mediated through the reverse tricarboxylic acid cycle and fueled by sulfur-oxidation, while the abundant metabolic potential for hydrogen oxidation and carbon fixation via the Calvin-Benson-Bassham cycle was hardly utilized. Notably, the highly diverse microbial community colonizing the analyzed black smoker chimney had a highly redundant metabolic potential. In contrast, the considerably less diverse community colonizing the diffusely venting chimney displayed a higher metabolic versatility. An increased diversity on the phylogenetic level is thus not directly linked to an increased metabolic diversity in microbial communities that colonize hydrothermal chimneys.
A bacterial pioneer produces cellulase complexes that persist through community succession
2018 - Nat Microbiol, 3: 99-107Evaluation of primers targeting the diazotroph functional gene and development of NifMAP – a bioinformatics pipeline for analyzing nifH amplicon data
2018 - Front Microbiol, in pressAbstract:
Diazotrophic microorganisms introduce biologically available nitrogen (N) to the global N cycle through the activity of the nitrogenase enzyme. The genetically conserved dinitrogenase reductase (nifH) gene is phylogenetically distributed across four clusters (I-IV) and is widely used as a marker gene for N2 fixation, permitting investigators to study the genetic diversity of diazotrophs in nature and target potential participants in N2 fixation. To date there have been limited, standardized pipelines for the nifH functional gene, which is in stark contrast to the rRNA gene. Here we present a bioinformatics pipeline for processing nifH amplicon datasets – NifMAP (“NifH MiSeq Illumina amplicon Analysis Pipeline”), which as a novel aspect uses Hidden-Markov models to filter out homologous genes to nifH. By using this pipeline, we evaluated the broadly inclusive primer pairs (Ueda19F-R6, IGK3-DVV, F2-R6) that target the nifH gene. To evaluate any systematic biases, the nifH gene was amplified with the aforementioned primer pairs in a diverse collection of environmental samples (soils, rhizosphere and roots samples, biological soil crusts and estuarine samples), in addition to a nifH mock community consisting of six phylogenetically diverse members. We noted that all primer pairs co-amplified nifH homologs to varying degrees; up to 90% of the amplicons were nifH homologs with IGK3-DVV in some samples (rhizosphere and roots from tall oat-grass). In regards to specificity, we observed some degree of bias across the primer pairs. For example, primer pair F2-R6 discriminated against cyanobacteria (amongst others), yet captured many sequences from subclusters IIIE and IIIL-N. These aforementioned subclusters were largely missing by the primer pair IGK3-DVV, which also tended to discriminate against Alphaproteobacteria, but amplified sequences within clusters IIIC (affiliated with Clostridia) and clusters IVB and IVC. Primer pair Ueda19F-R6 exhibited the least bias and successfully captured diazotrophs in cluster I and subclusters IIIE, IIIL, IIIM and IIIN, but discriminated against Firmicutes and subcluster IIIC. Taken together, our newly established bioinformatics pipeline, NifMAP, along with our systematic evaluations of nifH primer pairs permit more robust, high-throughput investigations of diazotrophs in diverse environments.
Transmission of fungal partners to incipient Cecropia-tree ant colonies
2018 - PLoS One, 13: e0192207Abstract:
Ascomycete fungi in the nests of ants inhabiting plants (= myrmecophytes) are very often cultivated by the ants in small patches and used as food source. Where these fungi come from is not known yet. Two scenarios of fungus recruitment are possible: (1) random infection through spores or hyphal fragments from the environment, or (2) transmission from mother to daughter colonies by the foundress queen. It is also not known at which stage of the colony life cycle fungiculture is initiated, and whether the- symbiont fungi serve as food for the ant queen. To clarify these questions, we investigated four Azteca ant species inhabiting three different Cecropia species (C. insignis, C. obtusifolia, and C. peltata). We analysed an rRNA gene fragment from 52 fungal patches produced by founding queens and compared them with those from established Azteca colonies (n = 54). The infrabuccal pockets of winged queens were dissected to investigate whether young queens carry fungi from their mother colony. Additionally, 15N labelling experiments were done to verify whether the queen feeds on the patches until she is nourished by her first worker offspring. We infer from the results that the fungi cultivated in hollow plant structures are transferred from the parental colony of the young queen. First, fungal genotypes/OTU diversity was not significantly different between foundress queen patches and established colonies, and second, hyphal parts were discovered in the infrabuccal pockets of female alates. We could show that fungiculture already starts before queens lay their eggs, and that the queens do not feed on fungal patch material but feed it to the larvae. Our findings suggest that fungiculture may be crucial for successful colony founding of arboreal ants in the tropics.
Cultivation and genomic analysis of “Candidatus Nitrosocaldus islandicus”, an obligately thermophilic, ammonia-oxidizing thaumarchaeon from a hot spring biofilm in Graendalur valley, Iceland
2018 - Front Microbiol, 9: 193Abstract:
Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaeota in terrestrial high-temperature habitats, only one enrichment culture of an AOA thriving above 50 °C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a newly discovered thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (~85 %) enrichment from biofilm of an Icelandic hot spring (73 °C). This AOA, which we provisionally refer to as “Candidatus Nitrosocaldus islandicus”, is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometricall converts ammonia to nitrite at temperatures between 50 °C and 70 °C. “Ca. N. islandicus” encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO) generation*. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as “Ca. N. islandicus” is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that “Ca. N. islandicus” has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase (iorAB) as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes – one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaeota. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and other AOA.
Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments
2018 - Environ Microbiol, 20: 1041-1063Abstract:
Members of the phylum Acidobacteria are abundant and ubiquitous across soils. We performed the largest (to date) comparative genome analysis spanning subdivisions 1, 3, 4, 6, 8, and 23 (n=24) with the goal to identify features to help explain their prevalence in soils and understand their ecophysiology. In contrast to earlier studies, our analysis revealed that bacteriophage integration events along with transposable and mobile elements influenced the structure and plasticity of these genomes. Low- and high-affinity respiratory oxygen reductases were detected in multiple genomes, suggesting the capacity for growing across different oxygen gradients. Amongst many genomes, the capacity to use a diverse collection of carbohydrates, as well as inorganic and organic N sources (such as extracellular peptidases), were detected – both advantageous traits in environments with fluctuating nutrient environments. We also identified multiple soil acidobacteria with the potential to scavenge atmospheric concentrations of H2, now encompassing mesophilic soil strains within the subdivision 1 and 3, in addition to a previously identified thermophilic strain in subdivision 4. This large-scale acidobacteria genome analysis reveals traits that provide genomic, physiological and metabolic versatility, presumably allowing flexibility and versatility in the challenging and fluctuating soil environment.
Peatland Acidobacteria with a dissimilatory sulfur metabolism
2018 - ISME J, In pressAbstract:
Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.
Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle
2018 - ISME J, In pressAbstract:
A critical step in the biogeochemical cycle of sulfur on Earth is microbial sulfate reduction, yet organisms from relatively few lineages have been implicated in this process. Previous studies using functional marker genes have detected abundant, novel dissimilatory sulfite reductases (DsrAB) that could confer the capacity for microbial sulfite/sulfate reduction but were not affiliated with known organisms. Thus, the identity of a significant fraction of sulfate/sulfite-reducing microbes has remained elusive. Here we report the discovery of the capacity for sulfate/sulfite reduction in the genomes of organisms from thirteen bacterial and archaeal phyla, thereby more than doubling the number of microbial phyla associated with this process. Eight of the thirteen newly identified groups are candidate phyla that lack isolated representatives, a finding only possible given genomes from metagenomes. Organisms from Verrucomicrobia and two candidate phyla, Candidatus Rokubacteria and Candidatus Hydrothermarchaeota, contain some of the earliest evolved dsrAB genes. The capacity for sulfite reduction has been laterally transferred in multiple events within some phyla, and a key gene potentially capable of modulating sulfur metabolism in associated cells has been acquired by putatively symbiotic bacteria. We conclude that current functional predictions based on phylogeny significantly underestimate the extent of sulfate/sulfite reduction across Earth’s ecosystems. Understanding the prevalence of this capacity is integral to interpreting the carbon cycle because sulfate reduction is often coupled to turnover of buried organic carbon. Our findings expand the diversity of microbial groups associated with sulfur transformations in the environment and motivate revision of biogeochemical process models based on microbial community composition.
Ecology and biotechnological potential of bacteria belonging to the Pseudovibrio genus.
2018 - Appl. Environ. Microbiol., in pressAbstract:
Bacteria belonging to the genushave been isolated worldwide from a great variety of marines sources as both free living and host associated. So far, the available data depict a group of Alphaproteobacteria characterized by a versatile metabolism, which allows them to use a variety of substrates to meet their carbon, nitrogen, sulfur, and phosphorous requirements. Additionally,-related bacteria have been shown to proliferate under extreme oligotrophic conditions, tolerate high heavy metal concentrations, and metabolize potentially toxic compounds. Considering this versatility, it is not surprising that they have been detected from temperate to tropical regions, and are often the most abundant isolates obtained from marine invertebrates. Such association is particularly recurrent with marine sponges and corals, animals that play a key role in benthic marine systems. The data so far available indicate that these bacteria are mainly beneficial to the host, and besides being involved in major nutrient cycles, they could provide the host with both vitamins/cofactors and protection from potential pathogens via the synthesis of antimicrobial secondary metabolites. In fact, the biosynthetic abilities ofhave been emerging in recent years, and both genomic and analytic studies underlined how these organisms promise novel natural products of biotechnological value.
NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host.
2018 - ISME J, in pressAbstract:
The giant colonial ciliate Zoothamnium niveum harbors a monolayer of the gammaproteobacteria Cand. Thiobios zoothamnicoli on its outer surface. Cultivation experiments revealed maximal growth and survival under steady flow of high oxygen and low sulfide concentrations. We aimed at directly demonstrating the sulfur-oxidizing, chemoautotrophic nature of the symbionts and at investigating putative carbon transfer from the symbiont to the ciliate host. We performed pulse-chase incubations withC- andC-labeled bicarbonate under varying environmental conditions. A combination of tissue autoradiography and nanoscale secondary ion mass spectrometry coupled with transmission electron microscopy was used to follow the fate of the radioactive and stable isotopes of carbon, respectively. We show that symbiont cells fix substantial amounts of inorganic carbon in the presence of sulfide, but also (to a lesser degree) in the absence of sulfide by utilizing internally stored sulfur. Isotope labeling patterns point to translocation of organic carbon to the host through both release of these compounds and digestion of symbiont cells. The latter mechanism is also supported by ultracytochemical detection of acid phosphatase in lysosomes and in food vacuoles of ciliate cells. Fluorescence in situ hybridization of freshly collected ciliates revealed that the vast majority of ingested microbial cells were ectosymbionts.
Coexistence of novel gammaproteobacterial and Arsenophonus symbionts in the scale insect Greenisca brachypodii (Hemiptera, Coccomorpha: Eriococcidae).
2018 - Environ. Microbiol., in pressAbstract:
Scale insects are commonly associated with obligate, intracellular microorganisms which play important roles in complementing their hosts with essential nutrients. Here we characterized the symbiotic system of Greenisca brachypodii, a member of the family Eriococcidae. Histological and ultrastructural analyses have indicated that G. brachypodii is stably associated with coccoid and rod-shaped bacteria. Phylogenetic analyses have revealed that the coccoid bacteria represent a sister group to the secondary symbiont of the mealybug Melanococcus albizziae, whereas the rod-shaped symbionts are close relatives of Arsenophonus symbionts in insects - to our knowledge, this is the first report of the presence of Arsenophonus bacterium in scale insects. As a comparison of 16S and 23S rRNA genes sequences of the G. brachypodii coccoid symbiont with other gammaprotebacterial sequences showed only low similarity (∼90%), we propose the name 'Candidatus Kotejella greeniscae' for its tentative classification. Both symbionts are transovarially transmitted from one generation to the next. The infection takes place in the neck region of the ovariole. The bacteria migrate between follicular cells, as well as through the cytoplasm of those cells to the perivitelline space, where they form a characteristic 'symbiont ball'. Our findings provide evidence for a polyphyletic origin of symbionts of Eriococcidae. This article is protected by copyright. All rights reserved.
Evidence for H2 consumption by uncultured Desulfobacterales in coastal sediments.
2018 - Environ. Microbiol., In pressAbstract:
Molecular hydrogen (H2 ) is the key intermediate in the anaerobic degradation of organic matter. Its removal by H2 -oxidizing microorganisms is essential to keep anaerobic degradation energetically favorable. Sulfate-reducing microorganisms (SRM) are known as the main H2 scavengers in anoxic marine sediments. Although the community of marine SRM has been extensively studied, those consuming H2 in situ are completely unknown. We combined metagenomics, PCR-based clone libraries, single-amplified genomes (SAGs) and metatranscriptomics to identify potentially H2 -consuming SRM in anoxic coastal sediments. The vast majority of SRM-related H2 ase sequences were assigned to group 1b and 1c [NiFe]-H2 ases of the deltaproteobacterial order Desulfobacterales. Surprisingly, the same sequence types were similarly highly expressed in spring and summer, suggesting that these are stable and integral members of the H2 -consuming community. Notably, one sequence cluster from the SRM group 1 consistently accounted for around half of all [NiFe]-H2 ase transcripts. Using SAGs, we could link this cluster with the 16S rRNA genes of the uncultured Sva0081-group of the family Desulfobacteraceae. Sequencing of 16S rRNA gene amplicons and H2 ase gene libraries suggested consistently high in situ abundance of the Sva0081 group also in other marine sediments. Together with other Desulfobacterales these likely are important H2 -scavengers in marine sediments. This article is protected by copyright. All rights reserved.