Publications in peer reviewed journals

4 Publications found
  • Lifestyle and horizontal gene transfer-mediated evolution of Mucispirillum schaedleri, a core member of the murine gut microbiota

    Loy A, Pfann C, Steinberger M, Hanson B, Herp S, Brugiroux S, Gomes Neto JC, Boekschoten MV, Schwab C, Urich T, Ramer-Tait AE, Rattei T, Stecher B, Berry D
    2017 - mSystems, 2: e00171-16


    Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem.

  • Crenothrix are major methane consumers in stratified lakes

    Oswald K, Graf JS, Liftmann S, Tierken D, Brand A, Wehrli B, Albertsen M, Daims H, Wagner M, Kuypers MMM, Schubert CJ, Milucka J
    2017 - ISME J, in press


    Methane-oxidizing bacteria represent a major biological sink for methane (Oremland and Culbertson 1992) and are thus Earth’s natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870 (Cohn 1870) but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an ‘unusual’ methane monooxygenase (MMO) which was only distantly related to ‘classical’ MMO of gamma-proteobacterial methanotrophs (Stoecker et al., 2006). We now correct this assignment and show that C. polyspora as well as its lacustrine relative encode a typical gamma-proteobacterial pmoA. Stable-isotope labeling in combination with single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Concurrently, Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N2O. Due to their large biomass and rapid planktonic growth Crenothrix might constitute a major biological sink for methane and should be considered in the context of environmental removal of methane. 

  • Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system

    Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, Neufeld JD
    2017 - ISME J, in press


    Thaumarchaeota have been detected in several industrial and municipal wastewater treatment plants (WWTPs), despite the fact that ammonia-oxidizing archaea (AOA) are thought to be adapted to low ammonia conditions. The activity, physiology, and metabolism of WWTP-associated AOA remains poorly understood. We report here the cultivation and complete genome sequence of Candidatus Nitrosocosmicus exaquare, a novel AOA representative from a municipal WWTP in Guelph, Ontario (Canada). In enrichment culture, Ca. N. exaquare oxidizes ammonia to nitrite stoichiometrically, is mesophilic, and tolerates at least 15 mM of ammonium chloride or sodium nitrite. Microautoradiography (MAR) for enrichment cultures demonstrates that Ca. N. exaquare assimilates bicarbonate in association with ammonia oxidation. However, despite using inorganic carbon, the ammonia-oxidizing activity of Ca. N. exaquare is greatly stimulated in enrichment culture by the addition of organic compounds, especially malate and succinate. Ca. N. exaquare cells are coccoid with a diameter of approximately 1-2 µm. Phylogenetically, Ca. N. exaquare belongs to the Nitrososphaera sister cluster within the Group 1.Ib Thaumarchaeota, a lineage which includes most other reported AOA sequences from municipal and industrial WWTPs. The 2.99 Mbp genome of Ca. N. exaquare encodes pathways for ammonia oxidation, bicarbonate fixation, and urea transport and breakdown. In addition, this genome encodes several key genes for dealing with oxidative stress, including peroxidase and catalase. Incubations of WWTP biofilm demonstrate partial inhibition of ammonia-oxidizing activity by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), suggesting that Ca. N. exaquare-like AOA might contribute to nitrification in situ. However, CARD-FISH-microautoradiography showed no incorporation of bicarbonate by detected Thaumarchaeaota, suggesting that detected AOA may incorporate non-bicarbonate carbon sources or rely on an alternative, yet unknown metabolism.


  • Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments.

    Mußmann M, Pjevac P, Krüger K, Dyksma S
    2017 - ISME J, in press


    To date, very little is known about the bacterial core community of marine sediments. Here we study the environmental distribution, abundance and ecogenomics of the gammaproteobacterial Woeseiaceae/JTB255 marine benthic group. A meta-analysis of published work shows that the Woeseiaceae/JTB255 are ubiquitous and consistently rank among the most abundant 16S rRNA gene sequences in diverse marine sediments. They account for up to 22% of bacterial amplicons and 6% of total cell counts in European and Australian coastal sediments. The analysis of a single-cell genome, metagenomic bins and the genome of the next cultured relative Woeseia oceani indicated a broad physiological range, including heterotrophy and facultative autotrophy. All tested (meta)genomes encode a truncated denitrification pathway to nitrous oxide. The broad range of energy-yielding metabolisms possibly explains the ubiquity and high abundance of Woeseiaceae/JTB255 in marine sediments, where they carry out diverse, but yet unknown ecological functions.The ISME Journal advance online publication, 6 January 2017; doi:10.1038/ismej.2016.185.

Book chapters and other publications

No matching database entries were found.