• We seek to understand

    the role of microorganisms in Earth's nutrient cycles

    and as symbionts of other organisms

  • Cycling of carbon, nitrogen and sulfur

    affect the health of our planet

  • Ancient invaders -

    Bacterial symbionts of amoebae

    and the evolution of the intracellular lifestyle

  • The human microbiome -

    Our own social network of microbial friends

  • Marine symbioses:

    Listening in on conversations

    between animals and the microbes they can't live without

  • Single cell techniques offer new insights

    into the ecology of microbes

  • Apply for the DOME International PhD/PostDoc program

Dome News

Latest publications

Bottled aqua incognita: Microbiota assembly and dissolved organic matter diversity in natural mineral waters

Background: Non-carbonated natural mineral waters contain microorganisms that regularly grow after bottling despite low concentrations of dissolved organic matter (DOM). Yet, the compositions of bottled water microbiota and organic substrates that fuel microbial activity, and how both change after bottling, are still largely unknown.

Results: We performed a multifaceted analysis of microbiota and DOM diversity in twelve natural mineral waters from six European countries. 16S rRNA gene-based analyses showed that less than ten species-level operational taxonomic units (OTUs) dominated the bacterial communities in the water phase and associated with the bottle wall after a short phase of post-bottling growth. Members of the betaproteobacterial genera Curvibacter, Aquabacterium, and Polaromonas (Comamonadaceae) grew in most waters and represent ubiquitous, mesophilic, heterotrophic aerobes in bottled waters. Ultrahigh-resolution mass spectrometry of DOM in bottled waters and their corresponding source waters identified thousands of molecular formulae characteristic of mostly refractory, soil-derived DOM.

Conclusions. The bottle environment, including source water physicochemistry, selected for growth of a similar low-diversity microbiota across various bottled waters. Relative abundance changes of hundreds of multi-carbon molecules were related to growth of less than ten abundant OTUs. We thus speculate that individual bacteria cope with oligotrophic conditions by simultaneously consuming diverse DOM molecules.

Lesaulnier CC, Herbold CW, Pelikan C, Gérard C, Le Coz X, Gagnot S, Berry D, Niggemann J, Dittmar T, Singer GA, Loy A
2017 - Microbiome, In press

Depth distribution and assembly of sulfate-reducing microbial communities in marine sediments of Aarhus Bay

Most sulfate-reducing microorganisms (SRM) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRM and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRM by amplicon-sequencing and quantifying dsrB, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRM were present in all geochemical zones including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurring across the transition from bioturbated surface sediments into non-bioturbated sediments below, where redox fluctuations and input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community.

Jochum LM, Chena X, Lever MA, Loy A, Jørgensen BB, Schramm A, Kjeldsen KU
2017 - Appl Environ Microbiol, In press

Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle.

Nitrification, the oxidation of ammonia (NH3) via nitrite (NO2(-)) to nitrate (NO3(-)), is a key process of the biogeochemical nitrogen cycle. For decades, ammonia and nitrite oxidation were thought to be separately catalysed by ammonia-oxidizing bacteria (AOB) and archaea (AOA), and by nitrite-oxidizing bacteria (NOB). The recent discovery of complete ammonia oxidizers (comammox) in the NOB genus Nitrospira, which alone convert ammonia to nitrate, raised questions about the ecological niches in which comammox Nitrospira successfully compete with canonical nitrifiers. Here we isolate a pure culture of a comammox bacterium, Nitrospira inopinata, and show that it is adapted to slow growth in oligotrophic and dynamic habitats on the basis of a high affinity for ammonia, low maximum rate of ammonia oxidation, high growth yield compared to canonical nitrifiers, and genomic potential for alternative metabolisms. The nitrification kinetics of four AOA from soil and hot springs were determined for comparison. Their surprisingly poor substrate affinities and lower growth yields reveal that, in contrast to earlier assumptions, AOA are not necessarily the most competitive ammonia oxidizers present in strongly oligotrophic environments and that N. inopinata has the highest substrate affinity of all analysed ammonia oxidizer isolates except the marine AOA Nitrosopumilus maritimus SCM1 (ref. 3). These results suggest a role for comammox organisms in nitrification under oligotrophic and dynamic conditions.

Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, Daebeler A, Romano S, Albertsen M, Stein LY, Daims H, Wagner M
2017 - Nature, 549: 269-272

Lecture series

The rapidly expanding universe of giant viruses

Chantal Abergel
Centre National de la Recherche Scientifique & Aix-Marseille University
16:30 h
Hörsaal 2, UZA 1, Althanstr. 14, 1090 Wien

The importance of growing slowly: roles for redox-active "antibiotics" in microbial survival and development

Dianne Newman
California Institute of Technology
14:00 h
Hörsaal 2, UZA1, Althanstr. 14, 1090 Wien

Harnessing Bacteria for Drug Discovery: from Bioprospecting to Synthetic Biology

Sergey Zotchev
Department of Pharmacognosy, University of Vienna
12:00 h
Hörsaal 2. (UZA I), Althanstrasse 14, A-1090 Vienna